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Abstract

The problem of the rapid cylindrically and spherically symmetric strong compression of a perfect (non-viscous and non-heat-
conducting) gas is solved. The term “rapid” denotes that the compression time is much less than the run time of a sound wave
across the initial cylindrical or spherical volume, while the term “strong” in this case means the simultaneous attainment of as large
a density and temperature as desired. By definition, rapid compression must begin in a strong shock wave, which propagates to
the axis or centre of symmetry. When the shock wave approaches the centre of symmetry this flow is described by the self-similar
Guderley equation with an unbounded rise in temperature, pressure and velocity and a finite increase in the density at the centre of
symmetry both behind the arriving and behind the reflected shock waves. To obtain as high an increase in the density as desired
one must add on a centred compression wave with focus at the centre of symmetry to the overtaking shock wave at the instant it
arrives at the centre of symmetry C−-characteristic. Outside a small neighbourhood of the focus one can calculate, by the method
of characteristics, the centred wave and the trajectory of the piston which produces it. As for any centred wave, this calculation
must be carried out from the centre of symmetry. Since some of the parameters at the focus (certainly the pressure, temperature and
velocity of the gas) are unbounded, it is necessary to preface the calculation by the method of characteristics by constructing an
analytic solution which holds in a small neighbourhood of the centre of symmetry. Below, after constructing the required solution,
the centred waves corresponding to it and the trajectories of the piston producing them are calculated.
© 2007 Elsevier Ltd. All rights reserved.

Interest in problems of spherically and cylindrically symmetric transient compression has been stimulated by
innumerable applications, including plans to realize inertial controlled thermonuclear fusion.1–6 To achieve this the
material of the thermonuclear target must be compressed by a factor of (0.5–4) × 103, its temperature must be increased
to (0.3–1) × 108 K and one must try to satisfy the “ignition condition”

Here I* is a known constant, � is the density, r is the distance from the centre of symmetry and rf is the value of r
at the boundary of the compressed sphere or cylinder. It is necessary to satisfy these conditions with comparatively
low energy costs, while to reduce the effect of viscosity, heat conduction and other dissipative effects the compression
and heating up must occur as rapidly as possible. Thus, if �* is the kinematic viscosity of the gas while l* and �*
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are the characteristic length and time of the process, the effect of viscosity will be less the smaller the ratio �∗�∗/l2∗.
Consequently, a reduction in �* and a reduction in the viscosity produce the same effect.

The main result of the solution7 of the variational problem of the energetically optimum compression to a specified
ratio c of the initial and final volumes is the detection of the possibility of a relatively rapid shock-free (isentropic)
compression “from rest to rest” in a time of the order of the run time t0 of a sound wave from the boundary of the initial
volume to the centre of symmetry.

The energetically optimum isentropic compression from rest to rest enables the density ratio �f/�0 = c and ignition
criterion I ≥ I* necessary for controlled inertial thermonuclear fusion to be achieved at a low level of the temperature
Tf of the compressed material. In fact, for isentropic compression of a perfect gas Tf/T0 = (�f/�0)�−1, where � is
the adiabatic index, and if �f/�0 = 104, then Tf/T0 = 39.8 and Tf/T0 = 464 respectively for � = 7/5 and � = 5/3. When
T0 = 300 K this gives a temperature many orders of magnitude less than the required Tf = (0.3–1) × 108 K.

For tf � t0 compression to c � 1 must begin with a shock wave travelling towards the centre of symmetry. In the
region of the centre of symmetry the flow is described by the Guderley solution.8–10 According to this, for an order
of magnitude more rapid compression with a strong head shock wave SI the gas density increases by a finite factor.
It reaches its maximum value behind the reflected shock wave, where, in the spherically symmetric case, � = 32.3 �0
for � = 5/3 and � = 145 �0 for � = 7/5. Behind the reflected shock wave SR the gas moves from the centre of symmetry.
The velocity and density of the gas at the centre of symmetry then becomes zero. Whereas zero velocity is a natural
consequence of the symmetry of the flow, the fact that the density vanishes is not so obvious. The latter, however, can
be explained fairly simply. The point is that the instant when the shock wave SI arrives at the centre of symmetry for a
finite density, the pressure p, the temperature and the entropy s behind the SI become infinite. At the centre of symmetry
these parameters are also infinite behind the reflected shock wave. Unlike the entropy conserved in the particle, the
pressure when a transition occurs from SR to the centre of symmetry (in the rt plane – on the t axis) becomes finite. As
a result, as also in the problem of a strong point explosion, in the perfect gas approximation at the centre of symmetry
the temperature remains infinite while the density � ∼ p/T becomes zero.

As already stated, it is possible to obtain densities greater than those behind the reflected shock wave if we add to the
particular C−-characteristic of the Guderley solution a fan of characteristics of the same family with focus at the centre
of symmetry. In Ref. 11 an attempt was made to solve the singularity which arises at the centre of symmetry, but this
was unsuccessful. Below we explain the reason for this lack of success, we obtain the required analytic solution with
extremely interesting properties, and then, from it, by using the method of characteristics, we construct the trajectories
of the piston, which provide the conditions required for controlled inertial thermonuclear fusion. In the next section,
which precedes a discussion of these results, we sum up more than ten years of discussion on the possibility of the
isentropic compression of a perfect gas, bounded by a cylindrical or spherical envelope (“piston”) from rest to rest.

1. The isentropic compression of a perfect gas

In the problem of the transient compression of a perfect gas at rest with uniform thermodynamic properties at
the initial instant of time t = 0, from energy considerations it is best to represent the compression after a specified
time tf to a specified mean density �f = c�0, where �0 is the initial density, and the degree of compression c > 1, with
minimum work of the piston. The variational problem of the shock-free one-dimensional compression under the above
conditions was formulated for the first time by Sidorov.12,13 When tf ≤ t0 an exact solution was constructed for the
compression of a plane layer of a perfect gas.12,13 This is illustrated in Fig. 1,a in which x is a Cartesian coordinate, the
thick curves are the trajectories of a fixed wall: x ≡ 0 and of the piston: x = x(t), while the thin inclined straight lines
are the C−-characteristics, focusing at the instant when the compression is completed (when t = tf). When tf = t0 the
characteristics are focused on the fixed wall. If tf ≤ t0, the plane isentropic flow is a simple wave. For this the pressure
p is a known function of the gas velocity, while on the piston dx/dt = 1/t′ where t′ = dx/dt. Thus, p = p(t′), and the work
of compression of the gas is equal to

(1.1)

The solution of Euler’s equation of the variational problem with functional (1.1) is elementary: t′ = const = tf/(xi − xf),
which corresponds to the motion of a piston in a gas with constant non-zero velocity. This solution, however, does not
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Fig. 1.

satisfy the requirement of shock-free flow, which occurs in the formulation of the problem, or the form of functional
(1.1) with known function p(t′) obtained as a result of this requirement. For this reason the trajectory of the piston
contains an initial part of the boundary extremum ii1 which does not satisfy Euler’s equation. The motion of the piston
begins with zero velocity, which increases (in modulus) to the maximum achievable, so that the C−-characteristics
only intersect when t = tf. As a result, as is also required from the formulation of the variational problem, when t < tf
the flow is shock-free, while the shock wave, which at once is of finite intensity, only occurs at the instant when the
compression is completed (at the point x = xf ◦ ≥ 0, t = tf ≤ t0 in the xt plane). When tf < t0 the shock wave which
occurs before reflection from the fixed wall propagates to the left. When tf = t0 it immediately moves to the right.

For a fixed fairly short time of the process tf the requirement that it should be isentropic or, which is equivalent,
shock-free in general by no means ensures a minimum of the work expended in compression. In fact, suppose that for
tf < t0 the specified coordinate of the piston xf = xf ◦ > 0. In this case the gas is compressed without shock which,
prior to compression, was arranged with xf ◦ ≤ x ≤ x. Here the whole of the compressed gas occupies zero volume,
i.e. its density and pressure when t = tf becomes infinite, while the gas close to the fixed wall (0 ≤ x < xf ◦ ) remains
uncompressed. It can be shown that for such shock-free compression the work A is infinite. On the other hand, the work
required for shock compression to 0 < xf ≤ xf ◦ by a piston moving, for example, with constant velocity (Fig. 1,b;
the double-line sections are trajectories of the shock wave) is finite. Here the shock compression is energy-wise more
advantageous than shock-free compression. Since when xf ≥ xf ◦ the work of shock-free compression is a continuous
function of xf, a similar situation also occurs when there is a finite difference between xf and xf ◦ . Moreover, when
there is a shock wave present, the motion of a piston with a constant velocity is not necessarily energetically optimum.
Finally, until xf < xf ◦ shock-free compression is simply impossible.

The variational problem of shock-free compression of a gas by a plane, cylindrical or spherical piston was solved in
Ref. 7 in the exact formulation for an arbitrary time tf. Here, we mean by an exact solution the reduction of the problem
to a numerical solution of certain standard problems of the method of characteristics with finite relations on one of
the characteristics. The latter are obtained as integrals of the necessary optimality conditions. One of the results of the
solution is the discovery of the possibility of isentropic compression from rest to rest. To achieve this the specified
compression time tf must be no less than a certain value tf0. When tf ≥ tf0 shock-free compression from rest to rest is
energetically certainly more favourable than any other both shock-free and shock. For this reason it is natural to call it
ideal compression (IC). According to results obtained in Refs. 14, 15, the ratio tf0/t0 = 2 when there is no compression
(c = 1) and tf0/t0 → 1when c → ∞. Moreover, as was pointed out in Ref. 16, using one-dimensional solutions with any
symmetry, ideal compression can also be achieved after a finite comparatively short time using an ideally deformed
two-dimensional piston for an arbitrary spatial initial volume, for example a cube. Compression of the spatial volume
can be obtained by an infinite number of methods, and they all give a finite volume similar to the initial one.

In ideal compression, the trajectory of a plane cylindrical or spherical piston corresponds to the flow pattern shown
in the rt plane in Fig. 2,a. In this figure, in addition to the axes of coordinates and the trajectory of the piston if we show
the C+- and C−-characteristics. We have taken as the scale of length, velocity, time and density here and henceforth
the initial coordinate of the piston ri, the velocity of sound in the uncompressed gas a0, the ratio ri/a0 and the initial
density �0, and hence the rectilinear “limiting” C−-characteristic i0, which separates the gas at rest (under it) from the
moving gas, makes, with the axes of coordinates an angle equal in modulus to 45◦. Under the C+-characteristic c+f, at
least up to t = tf, the gas is also at rest. Its thermodynamic parameters are constant and are determined by the equations
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Fig. 2.

of state with equal initial specific entropy sf = s0 and with a density equal to, for the chosen scales of the specified
degree of compression

(1.2)

Here the velocity of sound a is a known function of � and s, while � = 1, 2 and 3 in the plane, cylindrical and spherical
cases. Similar equalities define all the thermodynamic parameters of the gas at rest in a finite state.

The trajectory of the piston which realises ideal compression, is such that the C−-characteristics which go from
its initial part ii1, being reflected from the t axis as C+-characteristics, are focused at the point f. At first glance, the
possibility of constructing such a trajectory seems problematical. This problem, however, has a simple solution, which
is a consequence of the invariance of the equations and the conditions which describe shock-free one-dimensional flow
of a perfect gas, with respect to an arbitrary shift in the origin of coordinates of the time and a simultaneous change
in the signs of the time and of the r-component of the velocity. After a corresponding shift and the change of signs
indicated, the compression problem (Fig. 2,a) becomes an expansion problem (Fig. 2,b) with constant parameters of
the gas at rest on the C−-characteristic ic− known from relations (1.2) and also known parameters (initial parameters
in the compression problem) of the gas at rest on the C+-characteristic c+f.

The solution of the problem of the expansion of a gas is reduced to successive solution of two standard problems
of the method of characteristics. A beam of rarefaction waves ic−c+ from the C−-characteristics emerging from the
point i, is first calculated. It is calculated up to the point c+ with known values of the density � = 1 and the other
thermodynamic parameters. The condition for symmetry of the flow on the axis or at the centre of symmetry is that
the velocity at the point c+ should be equal to zero, which is satisfied when calculating the beam ic−c+ over the whole
section c−c+ of the t axis. The trajectory of the advancing piston if is then constructed as the trajectory of a particle
starting from the point i, as a result of the solution of a Goursat problem with known C−-characteristic ic+ and also
known rectilinear C+-characteristic c+f, obtained from a calculation of a fan of rarefaction waves ic−c+, on which
the gas velocity is zero, and, according to the choice of the scales, � = a = 1. The trajectory of the piston and the flow
diagram corresponding to the initial problem of compression from rest to rest, are obtained from Fig. 2,b, calculated
by the method described, with specular reflection in the r axis, a shift by tf along the t axis and obvious redesignation
of the points.

Fig. 2,b corresponds to the motion of the piston at once with a finite velocity (when t < 0 it was at rest), which,
strictly speaking, is physically impossible. In contradiction to this, in the case shown in Fig. 2,a there is also no need
to instantaneously stop the piston at the instant t = tf. In fact, if when t > tf we remove the external force applied to the
piston, it begins its natural deceleration, and the gas will remain at rest and uniform until the arrival of the shock wave,
which moves with finite velocity from the point f to the t axis. At any point with coordinate 0 ≤ r < rf the shock wave
arrives after a finite time. On the other hand, acceleration from rest to rest is also most simply obtained when the piston
accelerates with a finite initial acceleration. In this case the C−-characteristics will not emerge from the point i, but
from a known part of the trajectory of the piston next to it, the length of which, like the intensity of the centred wave
at the point i, is determined by the condition for obtaining the required density at the point c+. A transfer from the
initial finite velocity of the piston to a finite initial acceleration does not lead to any appreciable complication of the
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calculation of the total expansion flow from rest to rest. Although in this case the time tc+ increases in the compression
problem from rest to rest, obtained from the expansion problem, as before tf0/t0 → 1 when c → ∞. Moreover, now
there is no physically unreal instantaneous stop of the piston when t = tf.

It is not surprising if, for physicists unfamiliar with gas dynamics, the possibility of a fairly rapid isentropic multiple
expansion or compression of a gas from rest to rest (close to the run time of a sound wave for expansion or across the
initial volume for compression) gives rise to amazement (obviously it is assumed to be unnecessary in all courses on
thermodynamics to stipulate “infinitely slow” compressions and expansions to ensure these processes to be isentropic).

At the same time, for volumes that include a centre or axis of symmetry, doubts have been raised regarding the
possibility of acceleration and deceleration from rest to rest.17–20 The point is that in the expansion of a cylindrical
and spherical piston both with finite and with infinite acceleration, the partial derivatives with respect to time of the
density and pressure at the point c− of the t axis in Fig. 2,b become infinite, to be sure, at “minus infinity”, indicating
not deceleration but acceleration of the gas. It was asserted in Refs. 17–20 that infinity of the derivatives (irrespective
of the sign!) indicates the occurrence of a shock wave. This idea is erroneous in several respects. First, the sign of the
infinity is important. In the case of the rarefaction flows corresponding to Fig. 2,b it is negative, which includes the
intersecting of similar characteristics in the neighbourhood of the point c−. Incidentally, the derivatives at the point i,
from which the C−-characteristics emerge, separating into a fan and not intersecting, also become “minus infinity”.
Second, the conversion of the same derivatives into “plus infinity” is insufficient for similar characteristics to intersect
and to form a jump. It is precisely this situation that occurs in the neighbourhood of the point c+ in Fig. 2,a. Third, even
the transformation of the same derivatives into “plus infinity” with simultaneous intersection of similar characteristics
does not necessarily lead to the occurrence of a shock wave. The simplest example is a centred compression wave with
a focal point of similar characteristics on a trajectory of the moving piston with an instantaneous change in its velocity
(like at the point f in Fig. 2,a with a stop of the piston at t = tf + 0).

In Refs. 18–20 a “mathematically rigorous” proof (for expanding cylindrical and spherical layers with a fixed
internal wall excluding a centre of symmetry) of the possibility of shock-free expansion from rest to rest supposedly
presented. The solution of the problems thereby arising (in particular, the Goursat problem) was constructed in the
form of series. Without going into detail of their construction, the proof of convergence, etc., we will emphasise that
without calculations (although using the same series) one can conclude that it is impossible for the flows described
to be shock-free. As an example consider a simple compression wave. For this, the continuous dependence of x on t
and on the gas velocity is given by the final formula. However, in this case also, only an additional analysis reveals
the intersection of similar characteristics. Only the absence of such intersections serves as a true indicator of the
continuity of the flow, which, for hollow volumes, containing a centre of symmetry, rarefaction flows (Fig. 2,b) in the
neighbourhood of the point c− where demonstrated and analysed16,21, and calculations were also carried out by the
method of characteristics in Refs. 22, 23. However, after this, discussions also appeared on the “gradient catastrophe
in rarefaction flows” with the introduction of the “rerarefaction effect”,24 which have no physical or mathematical
meaning.

An analogue of the problem of the trasient expansion from rest to rest is the stationary problem of the profiling of a
nozzle, which accelerates a uniform supersonic flow to a high-velocity uniform flow. In the axisymmetric case in this
problem, at the point of intersection of the initial C−-characteristic of the supersonic flow with the axis of symmetry (by
analogy with the point c− in Fig. 2,b) the same feature occurs – corresponding derivatives of the density and pressure
become minus infinity. This fact nevertheless, neither in theory nor in numerous calculations, prevents the construction
of the required contours of shock-free nozzles. Taking into account the well-known invariance of the equations of
the steady flows of a perfect gas, axisymmetric nozzles are converted in a natural way into axisymmetric diffusors,
which isentropically slow down the gas. This can be regarded as an additional confirmation of the correctness of the
considerations, related to unsteady problems, the diagrams of which are shown in Fig. 2.

A self-similar solution with a shock-free cylindrically and spherically symmetrical unlimited compression was
constructed in Refs. 25 and 26. In this solution the total compression time is equal to the run time of a sound wave
through the uncompressed gas, but at the instant of cumulation (when t = 0) all the parameters, including the density
and modulus of the velocity, become infinite. For this reason, and when there is incomplete cumulation, i.e. for a small
but non-zero final volume, this compression requires greater energy costs than compression to the same density and
temperature from rest to rest. Moreover, the distributions of the temperature, density and velocity of the gas, compressed
by this method, are extremely non-uniform with respect to the mass (the Lagrange variable) of the compressed gas.
A comparison of the different methods of shock-free compression was carried out in Refs. 11, 27 and 28; in addition
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to shock-free compression, self-similar compression from rest to rest was included in the comparison with a shock
wave travelling from the centre of symmetry of the shut-off gas.29 For c ≤ 106 the work of this compression is only an
amount of the order of 1% greater than that expended in ideal compression.

2. The solution in a small neighbourhood of the focus of a centred wave, adjoining a particular
characteristic of the Guderley problem

As was noted above, rapid compression after a time tf � t0 should initiate a strong shock wave. Then, to obtain a
greater increase in the density that follows from the Guderley solutions, the trajectory of the piston under the point
where a particular C−-characteristic of this solution C−

0 emerges from it, which overtakes the shock wave SI at the
instant it arrives at the centre of symmetry, it must change so as to ensure focusing of the fan of C−-characteristics
at the same point. For a plane piston such a possibility is elementary. The xt-diagram corresponding to it is shown in
Fig. 3,a. By increasing the initial velocity of the piston and the velocity of the shock wave SI, one can obtain as small a
compression time as desired for a ratio of the densities on the shock wave equal to (� + 1)/(� − 1). The density as large
as desired ensures a centred compression wave i10i2, which overtakes the shock wave at the point where it is reflected
from the plane of symmetry x = 0.

Suppose, as in Fig. 3, � = −t, the time t is measured from the instant of arrival of the shock wave SI and the particular
C−-characteristic C−

0 at the centre of symmetry, u = −v, and v is the gas velocity. If the focus of the C−-characteristics
at the origin of coordinates behind the shock wave (SI in Fig. 3,b) when � = 2 and 3 is possible, then their construction
must emerge from the centre of symmetry: r = � = 0. When investigating the structure of the flow in the region of the
centre of symmetry we will take into account the fact that the flow behind the shock wave SI and of the characteristic
C−

0 arriving at the centre of symmetry is non-isentropic with known entropy function p/�γ = S(m). Here the Lagrangian
variable m, which is constant on the trajectories of the particles, is introduced by the equality

(2.1)

in which the second expression for dm holds on the C−-characteristics.
On the characteristic C−

0 , which coincides with the line of constancy of the self-similar variable of the Guderley
solution � = r/�n, according to well-known results7–10 and Eq. (2.1), for an appropriate choice of the scales, we have

(2.2)

The constant � and the exponent n or � occurring here are known, and n < 1. Consequently, � < 0, and when m > 0
the density is constant, while a, u and p increase without limit. From relations (2.2) and the conditions for p/�� in the
compression wave to remain a function of m, we obtain that in this wave

(2.3)

Fig. 3.
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If, from the equations of continuity and motion

using expressions (2.3) to eliminate � and p, these equations become

(2.4)

while the relations equivalent to them, which are satisfied on the C±-characteristics, take the form

(2.5)

The upper (lower) signs correspond to the C+ (C−)-characteristics.
Formulae (2.3) predetermine the use of m as one of the independent variables. Taking as the second independent

variable the “characteristic” variable 	, which is constant on each C−characteristic of the fan, we reduce system (2.4)
to the form (the subscripts denote differentiation with respect to m and with respect to 	)

(2.6)

Eq. (2.6) hold, in particular, on the C−
0 -characteristic. Taking this and Eq. (2.2) into account, from the second

equation of (2.6), to determine the coefficient �, we arrive at a quadratic equation, the roots of which are

(2.7)

To choose the required root, the solution of the Guderley problem, as earlier in Refs. 8–10, is sought in the form

where, unlike the previous case, we take as the scale of the velocity and density the ratio nr/� and the gas density �0
in front of the shock wave SI. It can be shown that the values of the functions Ca and Cu behind SI (with subscript s)
and on the particular characteristic of the Guderley problem (with subscript 1 or 2) are given by the formulae

(2.8)

The values of Ca and Cu obtained form these formulae with �1,2 from Eq. (2.7), together with the self-similarity index
n, found when solving the Guderley problem, are presented in the upper part of the table. In all the versions, apart
from the third (� = 2, � = 1.4), these values of n do not differ from those obtained earlier in Ref. 9. It is possible that
the difference in the third version (n = 0.83522 given in Ref. 9 instead of n = 0.83532) is simply a misprint.

The part of the integral curve in the Cu, (Ca)2 plane, which gives the solution of the Guderley problem, is the
seperatrix of the singular point. In formulae (2.8) the subscripts 1 and 2 label possible values of Cu and Ca at it. The
requirement that the integral curve should pass through a point, which in this plane corresponds to the shock wave (the
corresponding values have the subscript s), determines the self-similarity index n and the choice between the roots �1
and �2. In all versions the root �1 was the required root.

Earlier11 the solution of system (2.6) was sought in the form

(2.9)

with the required functions A(	), U(	), 
(m) and �(m), where 
(0) = 0 while �(0) = ∞. This solution was constructed
for all versions presented in the upper part of the table. In the first five of these the required functions with 
(m) and �(m),
which satisfy the requirements formulated above, were obtained. In the sixth version they were complex. However,
in the first five cases also the C−-characteristics of the centred wave obtained was not situated above the particular
characteristic of the Guderley problem but under it, i.e. these solutions turned out to be physically meaningless. On
the other hand, in the problem of cylindrical and spherical compression waves, adjacent to “uniform rest”, the solution



A.N. Kraiko / Journal of Applied Mathematics and Mechanics 71 (2007) 676–689 683

in the form (2.9) was identical with the known solution of the problem of unlimited cumulation.25,26 The fact that,
in the latter case, representations (2.9) gave a correct solution, while for the problem with a bow shock wave SI it is
physically meaningless, is a paradox, without explaining which one cannot count on success.

When analysing the reasons for the occurrence of this paradox we note a fundamental difference between these
problems. On the initial characteristic of the wave adjacent to uniform rest, we have a = 1, u = 0, i.e. there are no
singularities, and “perturbations” a and u, defined by formulae (2.9), which increase without limit, are the main ones.
On the other hand, in the Guderley problem a and u on the particular characteristic increase without limit as m → 0.
Taking this into account in this problem the quantities z, a and u can be represented in the form

(2.10)

where the first terms, which are identical with the distributions (2.2) on the C−
0 -characteristic, are much greater as

m → 0 than the second terms, i.e.

(2.11)

In view of this and relations (2.10), the expression for the density (the first equality of (2.3)) in a small neighbourhood
of the centre of symmetry takes the form

(2.12)

Substituting expressions (2.10) into the first equation of system (2.6), taking relations (2.11) and (2.12) into account
and also the fact that the principal terms in Eq. (2.10) satisfy the same equation, we obtain

(2.13)

with unknown constant c0. These equations are consequences of the fact that Z, A, U and � are functions of 	, while
� and � are functions of m. Here and henceforth a dot denotes differentiation with respect to m, while a prime denotes
differentiation with respect to 	.

Similarly, from the second equation of system (2.6), after eliminating Z using Eq. (2.13), we obtain

(2.14)

Integrating the second and third of these equations, we obtain

Equating the constants C� and C� to unity, in accordance with the definition of the functions � and �, we obtain

(2.15)

The left-hand side of the first equation of (2.14) is a linear homogeneous function of A and U with constant
coefficients, and hence for the functions A(	) and U(	), which are not identically equal to zero, we have

(2.16)

with a constant k, like c1, which is to be determined. Taking equality (2.16) and the expression for c2 (the last equality
of (2.15)) into account the first equation of (2.14), relating the required constant, can be written in the form

(2.17)

The second equation for determining c1 and k are obtained after substituting expressions (2.10) into the third equation
of system (2.6). By expressing the derivative U′ and Z′ in terms of A′ using the first equation of (2.13) and equality
(2.16), we obtain
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For an identically unequal to zero derivative A′ the factor in front of it is equal to zero. From this we obtain

(2.18)

When c1 = c10 = 0, Eqs. (2.17) and (2.18) are identical and give

(2.19)

Hence, c10 = 0 and k0 is one of the solutions of this system, where k0 is one of the roots of the cubic equation obtained
after eliminating c1 from Eqs. (2.17) and (2.18). Knowing the root (2.19) we can reduce the cubic equation to the
following quadratic equation

(2.20)

For � = �1 the roots k1 and k2 of Eq. (2.20) together with k0, corresponding to them, according to equality (2.18),
the quantities c11 and c12 and the quantities �1 = c11 − 1 and �2 = c12 − 1 (we recall that for all versions c10 = 0 and,
consequently, �0 = −1), the exponent � and 1/�0 – the density on the particular C−-characteristic, refered to the density
in front of the shock wave, are collected in the lower part of the table. According to the data obtained and formulae
(2.15), for the functions � and � inequalities (2.11) are only satisfied for positive �, i.e. when � = �1. Below �1, �1
and k1 are written without a subscript.

In all cases � � 1. In the table we show values of 10−3��, representing the smallness of the factor �. If, on the
C−

0 -characteristic m = 1 when r = 1, then m = 10−3ν when r = 10−3, therefore the values of 10−3νΔ show that even at
such small distances from the centre of symmetry the corrections related to the centred compression wave and equal
to zero at the centre of symmetry, are quantities of the order of unity.

We will take as the characteristic variable the function A, putting 	 = A(	). By definition, the quantity 	, like the
function A(	), is equal to zero on the initial C−-characteristic of the fan of compression waves (the Guderley solutions
on the particular C−-characteristic) and increases with distance form it. Finally, in a small vicinity of the centre of
symmetry we will have

(2.21)

The similar representation for �, obtained from the last equation of system (2.6), has the form

(2.22)

The coefficients Cz and C� are given in the last rows of the table. The values k0, k2 and �2 given in them will not
henceforth be necessary.

3. Features of the calculation of the compression wave

According to formulae (2.21) and (2.22), the corrections to the Guderley solution due to the centred compression
wave are proportional to 	m� and, due to the fact that the exponent � is positive, they vanish at the centre of symmetry.
Theoretically they are also small in a certain “small neighbourhood” of the centre of symmetry, confirming, at first
glance, that the hypothesis that the solution of the problem of the collapse of a cylindrical or spherical shock wave
is independent (self-similar), in this neighbourhood, of the law of the piston motion, is correct. Indeed, for similar
hypotheses to be correct, law of the piston motion must satisfy the “common position” condition. The latter excludes
any “special adjustments”, and precisely the adjustment (the choice of the trajectory of the piston which ensures
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Table 1

Version number 1 2 3 4 5 6

� 2 3 2 3 2 3
� 5/3 5/3 1.4 1.4 1.2 1.2

n × 105 81563 68838 83532 71717 86116 75714
Cas × 104 5590 5590 4410 4410 3149 3149
Cus × 104 7500 7500 8333 8333 9091 9091
� = �1 1.302 1.282 1.887 1.885 2.976 3.016
Ca1 × 104 4344 4382 3464 3466 2515 2490
Cu1 × 104 5657 5618 6536 6534 7485 7510
�2 0.921 0.936 0.757 0.758 0.560 0.553
Ca2 × 104 5205 5165 5691 5689 6410 6441
Cu2 × 104 4795 4835 4309 4311 3590 3559

−� × 104 1130 1509 986 1315 806 1069
1/�0 4.75 5.19 7.57 8.49 15.0 17.3
k0 8.21 8.13 16.3 16.3 42.7 43.2
k = k1 2.397 2.161 4.098 3.768 8.480 7.968
� × 105 = �1 × 105 437 481 1103 1401 1761 2374
10−3�� 0.941 0.905 0.859 0.748 0.784 0.784
k2 0.26 0.24 1.04 1.06 3.51 3.55
−�2 0.70 0.60 0.71 0.62 0.73 0.64
−Cz 2.513 2.602 4.188 4.287 8.466 8.564
−C� 2.724 2.243 3.835 3.050 6.568 5.020

focusing of the C−-characteristics at the centre of symmetry) occurs in this problem. Since, however, � � 1, the
region of self-similarity has practically zero dimensions. This is obviously also a manifestation of the effect of the
above-mentioned adjustment.

To construct intense compression waves, the characteristic variable 	, which defines the perturbation of the velocity
of sound, must increase to a value necessarily exceeding unity. Because of the smallness of � this leads to the fact that
the second terms in expressions (2.10), despite the assumption that inequalities (2.11) are satisfied, which was used
when obtaining formulae (2.21) and (2.22), become predominant at extremely small values of m. For example, when
	 = 10 for the first version (see the Table 1) calculations using the formulae obtained are only valid up to m < 10−400.

In order not to have to carry out calculations for such small and, correspondingly extremely large, values of m� > 1040,
we will make a replacement of variables. We will take as the new variables

(3.1)

with the previous characteristic variable and density and with the quantities A and U having a quite different meaning
than previously. This should not lead to any misunderstandings, since A and U from Section 2 are not used any further.
The last relation of (3.1) is a consequence of the definition of the new A and the first formula of (2.3).

For fixed 
 = 
0, where, in view of what was stated above, 
0 is a comparatively large negative number (of the order
of 102–103), in the neighbourhood of the centre of symmetry the functions �, A, U and � (with subscript 0), according
to relations (3.1), (2.21) and (2.22) are given by the formulae

(3.2)

The constant 	C defines the intensity of the compression wave. As follows from the definition of 
 and from formulae
(3.2), for large negative 
0 for all 	C ≥ 	 > 0 the non-zero m0, z0 = �m0, r0 and �0 can be neglected. In contrast to this,
due to the smallness of � the differences of �0, A0, U0 and �0 from their values on the initial C−-characteristic

(3.3)
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will be quantities of the order of unity. In order that these differences, nevertheless, should not violate inequalities
(2.11), the quantity 
0 must be assumed to be equal to

(3.4)

In the variables (3.1) the equations of the characteristics (2.5), used in the method of characteristics to calculate the
compression wave when 
0 ≤ 
 ≤ 0 and 0 ≤ 	 ≤ 	C, are replaced by

(3.5)

where, as in relations (2.5), the upper (lower) signs correspond to the C+ (C−)-characteristics.
In addition to differential relations (3.5), to determine � along the C−-characteristics, we integrate the differential

equation

(3.6)

which is equivalent to the second equation of (2.5). As calculations have shown, the use of the variable M instead of 

when integrating Eq. (3.6) ensures far higher accuracy.

The calculation by the method of characteristics is carried out in the direction in which 	 and 
 increase: from the
trajectory 
 = 
0 with a value of 
0 calculated from formula (3.4), and with the functions �0, A0, U0 and �0, defined
by formulae (3.2), and from the initial C−-characteristic, �, A and U on which are constant, the values of which are
given by formulae (3.3). When calculating each new point one initially finds 
, �, A and U by integration of Eq. (3.5).
After this, the time � is determined by integrating Eq. (3.6) along the C−-characteristic, and the other variables are
calculated using the final formulae

4. The results of calculations

The solution obtained and the method of characteristics with successive calculation of the C−-characteristics,
corresponding to increasing values of 	, enable us to construct the flow to any fixed trajectory of the particles – the
lines m – const, for example, to m = 1. It can be taken as the required trajectory of the piston.

The two versions of the C−-characteristic and the trajectory of the piston, obtained as a result of the calculations,
are shown in Fig. 4 for � = 3 and � = 5/3 (a) and � = 6/5 (b). The coordinate r and the time t relate to rp and �p, where p
is the point of intersection of the trajectory of the piston (the upper curve) with the C−

0 -characteristic (the lower curve).
In these examples, along the trajectory of the piston 1 ≤ � ≤ 104. For this method of scaling r and t, the versions with
� = 2 for the same � hardly differ from those presented in Fig. 4.

Graphs of � against �o, where �◦ = �/�p, along the trajectories of the piston, obtained for the six versions presented
in the table, are given on a logarithmic scale in Fig. 5. Since � = 1 on the C−

0 -characteristic, all the curves 1–6 (on a

Fig. 4.
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Fig. 5.

logarithmic scale close to straight lines) in Fig. 5 depart from the origin of coordinates. Multiplication of the quantities
�, given in Fig. 5, by 1/�0 from the lower part of the table gives the ratio of the density to its value in front of the shock
wave SI.

After constructing the solution with a beam of compression waves focusing at the centre of symmetry, it is natural
to consider the solution when they are focused at a point situated on the same particular characteristic of the Guderley
problem, but not at the centre of symmetry, and for m0 > 0. The diagram of this flow is shown in Fig. 3,c (CW is a
compression wave and O is its focal point), and the corresponding � = 3, � = 7/5 and the two values of m0 = 10−6 and
10−3 of the dependence of � on �o along the trajectories of the piston give curves A and B in Fig. 5.

When m0 > 0 the flow at the focal point is described by the formulae for a plane centred simple wave (the conditions
for constancy at this point of the right Riemann invariant and entropy), i.e. at the focal point for constant m = m0, z, r
and �, the variables U and A from the preceding section or the initial velocity u (with a “minus” sign) and the velocity
of sound a satisfy the linear relations

(4.1)

with the previous formulae for the density and pressure: � = A1/�, p = �a2/�.
Relations (4.1), at least outwardly, have nothing in common with the solution constructed above. Despite this, curves

A and B in Fig. 5 only depart from curve 4 as they approach the focal points with m0 > 0, which is easily explained since
for m0 > 0 the focal point of the C−-characteristics correspond to small but nevertheless finite �◦

0 as the density increases
without limit. For these values of �◦

0 = �0/�p > 0 curves A and B have vertical asymptotes (a and b respectively). On
the C−

0 characteristic, on which the focal point differing from the centre of symmetry lie, �◦ = m1/(νn), and hence the

coordinate of the asymptotic �◦ = m
1/�n
0 .

After the solution with focusing of the C−-characteristics at the centre of symmetry is constructed, the mutual
closeness of the curves A and B as one moves away from the corresponding asymptote is also represented in a fairly
natural way. In fact, the solution constructed in Section 2 can be considered as the limit of the solution with a focal
point for m0 > 0, as m0 → 0. The fundamental difficulty of this passage to the limit is not eliminated due to the presence
of the asymptote. Nevertheless, if this passage to the limit is possible, the corresponding distributions and curves must
be close as one moves away from the asymptote.

What is more astonishing and even paradoxical is the correctness of the solution obtained in the calculations outside
a small neighbourhood of the centre of symmetry. It turned out that formulae (2.21) for a and u or (3.2) (without the
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subscript 0) for A and U

(4.2)

in the sense described below hold for all exp
0 ≤ m ≤ 1 or 
0 ≤ 
 ≤ 0 with 
0 defined by formula (3.4). Namely, the
substitution of the expressions for a and u or A and U (4.2), defined by the formulae into the equations for zm and �m,
which hold on the C−-characteristics (for 	 = const) (see formulae (2.6))

and their integration from m = m0 = exp
0 to m = 1 with initial conditions z0 = z(m0, 	) = (1 + �)m0 and �0 = 0 gives the
trajectory of the piston and the distributions of the parameters along it, which hardly differ from those obtained by the
method of characteristics. A single difference occurs in the value at the points of the trajectory of the characteristic
variable 	. Since, however, 	 is an auxiliary variable, this difference is unimportant. The statement in the last two
paragraphs holds for all the values of � and �.

5. Conclusion

The results presented above have shown that it is possible in principle simultaneously to compress and heat up a gas
to the densities and temperatures required to obtain controlled inertial thermonuclear fusion, and, which is extremely
important, in a time that is an order of magnitude less than the run time of a sound wave across the uncompressed
target. Dissipative effects and the actual thermodynamics, different from the thermodynamics of a perfect gas, inevitably
change both formulae and numerical results, but hardly so much that the required conditions become unachievable. The
instability of the flow constructed is more important. The instability of the Guderley solution established previously in
Ref. 30 manifests itself in the fact that, as the radius to the centre of symmetry of the shock wave decreases to a negligibly
small neighbourhood of it (with respect to the Lagrange variable), spatial perturbations destroy the symmetry of the
flow. Later (as the reflected wave moves away from the centre of symmetry) outside this neighbourhood the symmetry
of the flow is re-established. A similar instability also occurs for centred compression waves. Another matter is the fact
that to use for the practical realisation of strong compression it is proposed a layered system with contact discontinuities,
which are not present in the gas-dynamic formulation considered above. The presence of contact discontinuities in
accelerating flows with a shock wave generates a Rayleigh-Taylor and Richtmeyer-Meshkov instabilities,31,32 which
may manifest themselves in the whole flow.

Theoretically by, the solution constructed is interesting at least as an example of both the conservation (but only in a
negligibly small region of the centre of symmetry), and of the change (outside this neighbourhood) of the self-similar
Guderley solution. In this connection, it is worth attempting (though this wont be simple) to solve the similar problem
with the centred wave replaced by a second shock wave, travelling to the centre of symmetry simultaneously with the
first. Finally, the paradoxical fact of the practical applicability of the solution constructed not only in the neighbourhood
of the focal point but also over the whole compression wave, requires an explanation.
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